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A B S T R A C T

Severe acute respiratory syndrome coronavirus 2 is responsible for the current COVID-19 pandemic resulting in
an escalating number of cases and fatalities worldwide. Preliminary evidence from these patients, as well as past
coronavirus epidemics, indicates that those infected suffer from disproportionate complement activation as well
as excessive coagulation, leading to thrombotic complications and poor outcome. In non-coronavirus cohorts,
evidence has accumulated of an interaction between the complement and coagulation systems, with one am-
plifying activation of the other. A pressing question is therefore if COVID-19 associated thrombosis could be
caused by overactivation of the complement cascade? In this review, we summarize the literature on thrombotic
complications in COVID-19, complement activation in coronavirus infections, and the crosstalk between the
complement and coagulation systems. We demonstrate how the complement system is able to activate the
coagulation cascade and platelets, inhibit fibrinolysis and stimulate endothelial cells. We also describe how these
interactions see clinical relevance in several disorders where overactive complement results in a prothrombotic
clinical presentation, and how it could be clinically relevant in COVID-19.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a
novel coronavirus (CoV) responsible for the current COVID-19 pan-
demic. The deterioration of organ function following infection from the
disease has largely been attributed to a maladaptive immune response
[1], of which the complement system is an integral part [2]. In addition
to complement activation, COVID-19 patients also suffer from excessive
coagulation, leading to thrombotic complications and poor clinical
outcome [3]. In non-CoV cohorts, there is evidence of interactions be-
tween the complement and coagulation systems, resulting in an am-
plification of their otherwise targeted responses
[4,5,14–23,6,24–30,7–13]. However, it is not known whether this
process occurs and could explain the thrombotic complications in
COVID-19. In this review, we summarize the literature on thrombotic
complications in COVID-19, complement activation in CoV infections,
and the crosstalk between the complement and coagulation system.

2. The complement system

The complement system is part of the innate immune response
[31,32] and made up of serine proteases that share the same ancestral

genes as coagulation proteins [33]. Much like the coagulation system,
its activation involves the interaction of plasma and membrane-bound
proteins. The function of the complement system is carried out by op-
sonization, generating pro-inflammatory mediators, and activating the
membrane attack complex (MAC, also known as the terminal comple-
ment complex C5b-9) [34]. This activation generally follows three
pathways, each triggered by different agents, which converge in the
formation of C3 convertase. C3 convertase then cleaves C3 into C3b, a
potent opsonin, and C3a, an anaphylatoxin [34]. Further propagation of
C3b also results in the generation of C5 convertase, which cleaves C5 to
C5a and C5b. C5b forms a complex with other complement proteins
that make up the C5b-9 membrane attack complex (MAC). Deposition
of MAC on cell membranes leads to calcium influx and cell lysis, but can
also activate intracellular signaling at lower doses [34]. The comple-
ment system is also regulated by complement control proteins, in-
cluding C1-inhibitor (CI-INH), decay-accelerating factor (DAF), C4-
binding protein (C4BP), factor H and other [34,35].
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3. Complement-mediated thrombosis

3.1. Complement and the coagulation cascade

One of the principal driving forces behind the coagulation cascade is
the exposure to tissue factor, which initiates the intrinsic coagulation
pathway. C5a has been shown to increase tissue factor activity in both
circulating form [4] and on endothelial cells [5]. This is supported by
ex-vivo studies that have showed that inhibition of C3 or C5 leads to
reduced expression of tissue factor [6,7]. The same reaction can be seen
on mast cells, where the complement system is able to induce the ex-
pression of tissue factor and promote a prothrombotic phenotype [8].
Other studies have also shown that MASP-1 and MASP-2, a group of
serine proteases that initiate the lectin complement pathway, can
cleave prothrombin to form activated thrombin [9], and autonomously
activate fibrinogen and factor XIII (fibrin stabilizing factor) [10,11].
MASP-1 knockout mice show significantly longer tail-bleeding times
compared to controls, highlighting the possible clinical significance of
these results [36]. Complement system inhibitors are also able to inhibit
the coagulation cascade [12,13]. C1 esterase inhibitor (C1-INH) can
inhibit factor XII [14] and thrombin [15], and C4b-binding protein
(C4BP) has been shown to inhibit protein S, a co-factor for the activated
protein-C pathway of coagulation inhibition. Thus, the complement
system is capable of activating the coagulation cascade (Table 1, Fig. 1).

3.2. Complement and platelets

Early murine studies showed that C3- and C5 deficient mice have
prolonged tail-bleeding times and reduced platelet function [16],
lending support to the notion that complement activates platelets. More
recent studies have highlighted how MAC is able to activate platelets
and enhance platelet aggregation [17–19], and that C3 deficiency in
mice reduces thrombus incidence, fibrin deposition and platelet acti-
vation [20]. The assembly of MAC on human platelets has also been
shown to result in a dose-dependent increase in the binding of coagu-
lation factors Va and Xa, which increases platelet prothrombinase ac-
tivity and initiates the release of the prothrombotic factor V from alpha-
granules [21,22]. Moreover, removal of external Ca2+ from this reac-
tion seems to inhibit the MAC-initiated release of the platelet alpha-
granule storage pool, suggesting that the effects that lead to increased

platelet prothrombinase activity are mediated by influx of Ca2+ across
the MAC pore [22]. Other studies have further demonstrated that pla-
telets have receptors for C3a that can mediate their activation [37].
Thus, both C3 and the MAC of the complement system appear capable
of activating platelets. This has seen clinical relevance in trauma pa-
tients, where complement activation has been shown to increased
platelet aggregation [23,24]. In summary, evidence points to a re-
lationship between complement and platelets on multiple levels that
can result in disproportionate platelet activation, as well the release of
platelet-derived microparticles that further stimulates this reaction
(Table 1, Fig. 1).

3.3. Complement and fibrinolysis

Fibrinolysis is the enzymatic breakdown of fibrin in blood clots. In a
study by Brown et al., C1-INH in its native state was found to inhibit
plasmin [27], which could lead to decreased fibrinolysis and increased
thrombus formation. Similarly, complement factors have been shown to
stimulate the expression of plasminogen activator inhibitor-1 (PAI-1) by
mast cells, further inhibiting fibrinolysis and thereby presumably pro-
moting thrombosis [8]. In vitro-studies have also showed that MASP-1
is able to activate thrombin-activated fibrinolytic inhibitor (TAFI), an
inhibitor of fibrinolysis [10,11]. Thus, evidence shows that fibrinolysis
can be regulated by both complement factors and complement in-
hibitors, through limitation of the formation of plasminogen to plasmin
and stimulating endogenous fibrinolysis inhibitors, respectively
(Table 1, Fig. 1). In addition to this, factors of fibrinolysis are able to
modify complement activity as well. Probably the most important
finding is that plasmin can activate C3 and C5 independently of C3
convertase [38–41], yielding functional MAC. This means that plasmin
bridges thrombosis and the immune response by liberating C5a and
inducing MAC assembly [42]. Plasmin, therefore, in addition to
thrombin, also seems to be a key C5a generating enzyme.

3.4. Complement and endothelial activation

Evidence supports the hypothesis that the endothelium is a key
target organ of COVID-19 [43]. This is of interest as studies have shown
that complement factors can stimulate endothelial activation. Probably
the most important finding in this context is that MAC is able to induce
endothelial cells to secrete von Willebrand factor [28], which seems to
be accompanied by an increase in prothrombinase activity. While the
precise mechanism behind this remains unclear, the assembly of MAC
on endothelial cell membranes appears to result in an influx of Ca2+

across the plasma membrane, which in turn leads to an increase in
endothelial cytosolic Ca2+ and secretion of platelet adhesive von
Willebrand factor [28]. This capacity of MAC to induce exposure of
prothrombinase enzyme complex may contribute to fibrin deposition
associated with immune endothelial injury [29]. C5a has also been
found to induce a dose-dependent expression of endothelial P-selectin
similar to that of thrombin [30]. This is important for the recruitment
and aggregation of platelets to areas of vascular injury through platelet-
fibrin and platelet-platelet binding. Thus, the complement system can
also induce thrombosis by inducing endothelial cells to release von
Willebrand factor and express P-selectin (Table 1, Fig. 1).

3.5. Clinical examples of complement-mediated thrombosis

Clinically relevant interplay between the complement and coagu-
lation system is seen in several disorders (“complementopathies”)
where complement overactivation results in a prothrombotic state.
Paroxysmal nocturnal hemoglobinuria (PNH) is a hematological dis-
order associated with an acquired deficiency in the synthesis of glyco-
phosphatidylinositol that renders erythrocytes susceptible to comple-
ment-mediated destruction [44]. PNH is also associated with an
increased risk of thrombosis linked to complement-mediated platelet

Table 1
Complement-mediated coagulopathy: molecular interactions.

Complement substrate Effect on hemostasis

C3a Platelet activation
C5a Increased tissue factor activity

Increased expression of endothelial P-selectin
Increased expression of PAI-1 on mast cells

MAC (C5b-9) Platelet activation
Increased binding of coagulation factors Va and Xa
Increased release of factor V from platelet alpha-
granules
Induces endothelial cells to secrete von Willebrand
factor

MASP 1 Activates thrombin
Activates TAFI
Activates factor XII
Activates fibrinogen

MASP 2 Activates thrombin
C1-INH Inhibits factor XII

Inhibits thrombin
Inhibits plasmin

C4BP Inhibits protein S

Abbreviations: C= complement factor; MAC=membrane attack complex;
MASP=mannan-binding lectin serine protease; C1-INH=C1 esterase in-
hibitor; C4BP=C4b-binding protein; PAI-1= plasminogen activator inhibitor-
1; TAFI= thrombin-activatable fibrinolysis inhibitor.
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activation [45]. Atypical hemolytic uremic syndrome (aHUS) is another
rare disease caused by excessive activation of the complement system,
due to production of anti-factor H autoantibodies or genetic mutations
in complement regulatory proteins, that results in platelet activation
and thrombotic microangiopathy [46]. Moreover, complement deposi-
tion on platelets has been linked to the severity and infarct volume in
acute stroke [47]. Increased complement deposition on platelets is also
seen in systemic lupus erythematosus (SLE) patients with a history of
venous thromboembolism [48]. Together, these disorders demonstrate
that increased complement activity leads to thrombotic events.

Eculizumab has been a therapeutic revolution for patients with
aHUS and PNH. The agent, an anti-C5 antibody that blocks formation of
MAC and C5a generation, has been shown to reduce thromboembolic
events in patients with PNH [49] and aHUS [50]. It has also shown
clinical benefit in treating thrombotic microangiopathy secondary to
sepsis-induced DIC [51], as well as provide potential benefits in anti-
phospholipid syndrome [36].

4. Thrombosis and hypercoagulability in COVID-19

Growing evidence from multiple studies indicates that COVID-19
patients suffer from excessive coagulation, leading to increased
thrombosis and poor clinical outcome [3]. In particular, the incidence
of venous thromboembolism (VTE) among COVID-19 patients in in-
tensive care units (ICU) appears to be higher compared to those re-
ported in other ICU-cohorts [52]. In an early study from Wuhan, 25% of
hospitalized COVID-19 patients developed VTE [53]. A similar in-
cidence of 31% was reported in a later European study of 184 patients
with severe COVID-19 [54]. A third study noted increased VTE in
COVID-19 patients with ARDS compared with a matched historic non-
CoV ARDS cohort [55]. In addition, the largest COVID-19 autopsy study
to date found pulmonary embolism (PE) in 21% of the patients and
deep vein thrombosis (DVT) in 40% [56]. In addition to VTE, ischemic
stroke has been recognized as a complication to severe COVID-19 [57].
In a current preprint study of 2132 patients, COVID-19 was found to be
independently associated with an increased risk of stroke compared to a

Fig. 1. Schematic overview of complement-mediated coagulopathy.
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matched Influenza group [58]. A recent pooled analysis of 11,685
COVID-19 patients also found that 20% had a documented myocardial
injury [59].

From a laboratory standpoint, blood hypercoagulability is fre-
quently encountered in COVID-19 patients [60,61]. D-dimer has gained
particular attention as a predictor of poor outcome, with several studies
concluding that increased D-dimer values correlate to injury severity
and death [61–68]. D-dimer levels also seem to gradually increase
during the diseases course [61]. Pooled results from a recent meta-
analysis also revealed that prothrombin time and D-dimer levels were
significantly higher in patients with severe compared to those with mild
COVID-19 [69]. Similar results have been reported for activated partial
thromboplastin time [3]. In an Italian study of 22 patients admitted to
the ICU due to COVID-19 associated respiratory failure, cases also
showed markedly hypercoagulable thromboelastometry profiles, as re-
flected by shorter Clot Formation Time (CFT) in and higher Maximum
Clot Firmness (MCF), indicative of hypercoagulability rather than
consumptive coagulopathy [68].

5. Complement activation in coronavirus infections

In a rodent study of SARS-CoV, which is closely related to SARS-
CoV-2, Gralinski and colleagues reported increased complement ac-
tivity and found that C3-deficient mice exhibited less respiratory dys-
function (despite equivalent viral loads in the lung), fewer neutrophils
and inflammatory monocytes, and reduced lung pathology and lower
cytokine and chemokine levels in both the lungs and sera compared to
controls [70]. This showed that the complement system is an important
host mediator of SARS-CoV-induced disease and that complement ac-
tivation regulates a systemic proinflammatory response to SARS-CoV
infection. In another rodent model of MERS-CoV, increased con-
centrations of C5a and C5b-9 were found in sera and lung tissues, and
blockade of the C5a-C5aR axis lead to the decreased tissue damage, as
manifested by reduced apoptosis and T cell regeneration in the spleen
[71]. This highlighted the fact that excessive complement activation
contributed to the dysregulated host immune responses that contribute
to the severe outcome of MERS-CoV infection as well. While these
studies suggest that complement activation regulates a systemic in-
flammatory response to CoV pneumonia, data on the role of comple-
ment activation in the development of specifically SARS-CoV-2 have
been scarce. However, in recent paper that examined skin and lung
tissues from 5 patients with severe COVID-19 characterized by re-
spiratory failure (n= 5) and purpuric skin rash (n=3), significant
deposits of C5b-9, C4d, and (MASP)-2 were found in the micro-
vasculature of lung tissue, consistent with systemic activation of the
alternative and lectin-based complement pathways. The purpuric skin
lesion samples showed a similar deposition of C5b-9 and C4d [72]. This
means that at least a subset of sustained, severe COVID-19 may be
accompanied by activation of complement pathways and an associated
procoagulant state. Further supporting these findings, a recent preprint
reported that N proteins of SARS-CoV, MERS-CoV and SARS-CoV-2
were found to bind to MASP-2, resulting in aberrant complement ac-
tivation and aggravated inflammatory lung injury. Complement hyper-
activation was also detected, and a suppressive effect was observed
when two deteriorating COVID-19 patients were treated with an anti-
C5a monoclonal antibody [73]. Another preprint measured ery-
throcyte-bound C3b, iC3b, C3dg and C4d using flow cytometry in pa-
tients. Here, the amount of erythrocytes with bound complement acti-
vation products was markedly elevated in hospitalized COVID-19
patients compared to with healthy donors, and continued to increase
during the first 7 days. Moreover, COVID-19 erythrocytes bound viral
spike protein, suggesting activation of the classic pathway of comple-
ment and immune complex deposition on the erythrocytes [74]. Thus,
preliminary evidence from COVID-19 patients, as well as other CoV
infections, indicates that the disease results in disproportionate com-
plement activation (Table 2).

6. Discussion

The aim of this study was to review the literature on complement
activation following CoV pneumonia, as well as the crosstalk between
the complement and coagulation systems. In short, evidence suggests a
range of interactions between the two, with activation of one ampli-
fying activation of the other independent of their respective established
pathways. For example, complement factors are able to increase tissue
factor activity [4–8], form activated thrombin from prothrombin
[9–11], increase platelet activity and aggregation [17–20,37], increase
prothrombinase activity and the release of platelet-derived procoagu-
lant granules [21,22], as well as stimulate endothelial cells to release
von Willebrand factor and express P-selectin [28–30]. Complement also
regulates fibrinolysis, with complement cascade inhibitors demon-
strating the ability to inhibit plasmin [27], and complement factors able
to activate the fibrinolysis inhibitors PAI-1 and TAFI [8,10,11]. This
collectively suggests that increased complement activity leads to in-
creased coagulation cascade activity and platelet aggregation, i.e. a
prothrombotic state, which is exemplified by a number of com-
plementopathies where inappropriate activation of the complement
pathways result in thrombotic complications that can be reduced using
complement-inhibitors. In the case of COVID-19, evidence is accumu-
lating of an incidence of VTE, stroke and myocardial injury that is
higher than matched ICU cohorts [52,53,68,54–61]. Intriguingly, early
evidence from COVID-19, as well as previous studies on SARS-CoV and
MERS-CoV, also indicates that the complement system is overactivated
and contributes to the dysregulated host immune response [70–74].
Although several similarities exist with known complementopathies,
there are yet no studies that have examined if there is an interaction
between the complement and coagulation system in COVID-19. Based
on the material provided in this review, such an interaction would
presumably lead to increased thrombosis, and might therefore explain
the prothrombotic state seen in these patients.

Abbreviations

aHUS atypical hemolytic uremic syndrome
ARDS acute respiratory distress syndrome
C1-INH C1-inhibitor
C4BP C4b-binding protein
CoV coronavirus
COVID coronavirus disease
DAF decay-accelerating factor
DIC disseminated intravascular coagulation
DVT deep vein thrombosis
ICU intensive care unit
MAC membrane attack complex
MASP mannan-binding lectin serine protease
MERS Middle East respiratory syndrome
PAI-1 plasminogen activator inhibitor-1
PE pulmonary embolism
PNH paroxysmal nocturnal hemoglobinuria
SARS severe acute respiratory syndrome
SLE systemic lupus erythematosus
TAFI thrombin activatable fibrinolysis inhibitor
TAT thrombin-antithrombin complex
VTE venous thromboembolism

Author contributions

Conceptualization: AFS, BMB. Methodology: AFS. Data curation:
AFS. Data interpretation: AFS, BMB. Writing—original draft prepara-
tion: AFS. Writing—review and editing: AFS, BMB. Supervision: BMB.

A. Fletcher-Sandersjöö and B.-M. Bellander Thrombosis Research 194 (2020) 36–41

39



Funding

Institutional funding only.

Acknowledgments

N/A.

Declaration of competing interest

None.

Statement

The corresponding author confirms that he had full access to all the
data in the study and had final responsibility for the decision to submit
for publication.

References

[1] A.M. Risitano, D.C. Mastellos, M. Huber-Lang, D. Yancopoulou, C. Garlanda, F.
Ciceri, J.D. Lambris, Complement as a target in COVID-19?. doi:https://doi.org/10.
1038/s41577-020-0320-7 (n.d.).

[2] J.V. Sarma, P.A. Ward, The complement system, Cell Tissue Res. 343 (2011)
227–235, https://doi.org/10.1007/s00441-010-1034-0.

[3] N. Tang, D. Li, X. Wang, Z. Sun, Abnormal coagulation parameters are associated
with poor prognosis in patients with novel coronavirus pneumonia, J. Thromb.
Haemost. 18 (2020) 844–847, https://doi.org/10.1111/jth.14768.

[4] K. Ritis, M. Doumas, D. Mastellos, A. Micheli, S. Giaglis, P. Magotti, S. Rafail,
G. Kartalis, P. Sideras, J.D. Lambris, A novel C5a receptor-tissue factor cross-talk in
neutrophils links innate immunity to coagulation pathways, J. Immunol. 177
(2006) 4794–4802, https://doi.org/10.4049/jimmunol.177.7.4794.

[5] K. Ikeda, K. Nagasawa, T. Horiuchi, T. Tsuru, H. Nishizaka, Y. Niho, C5a induces
tissue factor activity on endothelial cells, Thromb. Haemost. 77 (1997) 394–398,
https://doi.org/10.1055/s-0038-1655974.

[6] A. Landsem, H. Fure, D. Christiansen, E.W. Nielsen, B. Østerud, T.E. Mollnes,
O.L. Brekke, The key roles of complement and tissue factor in Escherichia coli-
induced coagulation in human whole blood, Clin. Exp. Immunol. 182 (2015) 81–89,
https://doi.org/10.1111/cei.12663.

[7] R. Øvstebø, M. Hellum, H.C.D. Aass, A.M. Trøseid, P. Brandtzaeg, T.E. Mollnes,
C.E. Henriksson, Microparticle-associated tissue factor activity is reduced by in-
hibition of the complement protein 5 in Neisseria meningitidis-exposed whole
blood, Innate Immun. 20 (2014) 552–560, https://doi.org/10.1177/
1753425913502099.

[8] J. Wojta, K. Huber, P. Valent, New aspects in thrombotic research: complement
induced switch in mast cells from a profibrinolytic to a prothrombotic phenotype,
Pathophysiol. Haemost. Thromb. 33 (2003) 438–441, https://doi.org/10.1159/
000083842.

[9] A. Krarup, R. Wallis, J.S. Presanis, P. Gál, R.B. Sim, Simultaneous activation of
complement and coagulation by MBL-associated serine protease 2, PLoS One. 2
(2007) e623, , https://doi.org/10.1371/journal.pone.0000623.

[10] K. Hess, R. Ajjan, F. Phoenix, J. Dobó, P. Gál, V. Schroeder, Effects of MASP-1 of the
complement system on activation of coagulation factors and plasma clot formation,
PLoS One. 7 (2012) e35690, , https://doi.org/10.1371/journal.pone.0035690.

[11] J. Dobó, V. Schroeder, L. Jenny, L. Cervenak, P. Závodszky, P. Gál, Multiple roles of
complement MASP-1 at the interface of innate immune response and coagulation,
Mol. Immunol. 61 (2014) 69–78, https://doi.org/10.1016/j.molimm.2014.05.013.

[12] A.E. Davis, Biological effects of C1 inhibitor, Drug News Perspect. 17 (2004)
439–446, https://doi.org/10.1358/dnp.2004.17.7.863703.

[13] S.M. Rezende, R.E. Simmonds, D.A. Lane, Coagulation, inflammation, and apop-
tosis: different roles for protein S and the protein S-C4b binding protein complex,
Blood. 103 (2004) 1192–1201, https://doi.org/10.1182/blood-2003-05-1551.

[14] A. de Agostini, H.R. Lijnen, R.A. Pixley, R.W. Colman, M. Schapira, Inactivation of
factor XII active fragment in normal plasma. Predominant role of C1-inhibitor, J.
Clin. Invest. 73 (1984) 1542–1549, https://doi.org/10.1172/JCI111360.

[15] M. Cugno, I. Bos, Y. Lubbers, C.E. Hack, A. Agostoni, In vitro interaction of C1-
inhibitor with thrombin, Blood Coagul. Fibrinolysis. 12 (2001) 253–260, https://
doi.org/10.1097/00001721-200106000-00005.

[16] F.C. Gushiken, H. Han, J. Li, R.E. Rumbaut, V. Afshar-Kharghan, Abnormal platelet
function in C3-deficient mice, J. Thromb. Haemost. 7 (2009) 865–870, https://doi.
org/10.1111/j.1538-7836.2009.03334.x.

[17] M.J. Polley, R.L. Nachman, Human complement in thrombin-mediated platelet
function: uptake of the C5b-9 complex, J. Exp. Med. 150 (1979) 633–645.

[18] P.J. Sims, E.M. Faioni, T. Wiedmer, S.J. Shattil, Complement proteins C5b-9 cause
release of membrane vesicles from the platelet surface that are enriched in the
membrane receptor for coagulation factor Va and express prothrombinase activity,
J. Biol. Chem. 263 (1988) 18205–18212.

[19] M.J. Polley, R. Nachman, The human complement system in thrombin-mediated
platelet function, J. Exp. Med. 147 (1978) 1713–1726.

[20] S. Subramaniam, K. Jurk, L. Hobohm, S. Jackel, M. Saffarzadeh, K. Schwierczek,
P. Wenzel, F. Langer, C. Reinhardt, W. Ruf, Distinct contributions of complement
factors to platelet activation and fibrin formation in venous thrombus development,
Blood. 129 (2017) 2291–2302, https://doi.org/10.1182/blood-2016-11-749879.

[21] T. Wiedmer, C.T. Esmon, P.J. Sims, On the mechanism by which complement
proteins C5b-9 increase platelet prothrombinase activity, J. Biol. Chem. 261 (1986)
14587–14592.

[22] T. Wiedmer, C.T. Esmon, P.J. Sims, Complement proteins C5b-9 stimulate procoa-
gulant activity through platelet prothrombinase, Blood. 68 (1986) 875–880.

[23] G. Atefi, O. Aisiku, N. Shapiro, C. Hauser, D. Lucca, R. Flaumenhaft, G.C. Tsokos,
J. Dalle Lucca, R. Flaumenhaft, G.C. Tsokos, Complement activation in trauma
patients alters platelet function, Shock. 46 (2016) 83–88, https://doi.org/10.1097/
SHK.0000000000000675.

[24] A. Fletcher-Sandersjöö, M. Maegele, B.-M. Bellander, Does complement-mediated
hemostatic disturbance occur in traumatic brain injury? A literature review and
observational study protocol, Int. J. Mol. Sci. 21 (2020) 1596, https://doi.org/10.
3390/ijms21051596.

[25] M. Huber-Lang, A. Kovtun, A. Ignatius, The role of complement in trauma and
fracture healing, Semin. Immunol. 25 (2013) 73–78, https://doi.org/10.1016/j.
smim.2013.05.006.

[26] M. van Griensven, D. Ricklin, S. Denk, R. Halbgebauer, C.K. Braun, A. Schultze,
F. Hönes, S. Koutsogiannaki, A. Primikyri, E. Reis, D. Messerer, S. Hafner,
P. Radermacher, A.R. Biglarnia, R.R.G. Resuello, J.V. Tuplano, B. Mayer, K. Nilsson,
B. Nilsson, J.D. Lambris, M. Huber-Lang, Protective effects of the complement in-
hibitor compstatin CP40 in hemorrhagic shock, Shock. 51 (2019) 78–87, https://
doi.org/10.1097/SHK.0000000000001127.

[27] E.W. Brown, S. Ravindran, P.A. Patston, The reaction between plasmin and C1-
inhibitor results in plasmin inhibition by the serpin mechanism, Blood Coagul.
Fibrinolysis. 13 (2002) 711–714, https://doi.org/10.1097/00001721-200212000-
00007.

[28] R. Hattori, K.K. Hamilton, R.P. McEver, P.J. Sims, Complement proteins C5b-9 in-
duce secretion of high molecular weight multimers of endothelial von Willebrand
factor and translocation of granule membrane protein GMP-140 to the cell surface,
J. Biol. Chem. 264 (1989) 9053–9060.

[29] K.K. Hamilton, R. Hattori, C.T. Esmon, P.J. Sims, Complement proteins C5b-9 in-
duce vesiculation of the endothelial plasma membrane and expose catalytic surface
for assembly of the prothrombinase enzyme complex, J. Biol. Chem. 265 (1990)
3809–3814.

[30] K.E. Foreman, A.A. Vaporciyan, B.K. Bonish, M.L. Jones, K.J. Johnson,
M.M. Glovsky, S.M. Eddy, P.A. Ward, C5a-induced expression of P-selectin in en-
dothelial cells, J. Clin. Invest. 94 (1994) 1147–1155, https://doi.org/10.1172/
JCI117430.

[31] A. Hammad, L. Westacott, M. Zaben, The role of the complement system in

Table 2
Key studies on complement activation in coronavirus pneumonia.

Reference CoV type Key finding

Gralinski [70] SARS-CoV Relative to controls, SARS-CoV-infected C3−/− mice exhibited less respiratory dysfunction (despite equivalent viral loads in the lung), fewer
neutrophils and inflammatory monocytes in the lungs, and reduced lung pathology and lower cytokine and chemokine levels in both the lungs and
the sera.

Jiang [71] MERS-CoV Complement was excessively activated in MERS-CoV-infected mice through observations of increased concentrations of C5a and C5b-9 in sera and
lung tissues, respectively. Blockade of the C5a-C5aR axis lead to the decreased tissue damage.

Magro [72] SARS-CoV-2 In the examination of tissue from 5 patients with severe COVID-19, significant deposits of C5b-9, C4d and MASP-2 were found in the pulmonary
microvasculature. Purpuric skin lesions of 3 patients also showed deposition of C5b-9 and C4d.

Gao [73]a SARS-CoV-2
SARS-CoV
MERS-CoV

The N proteins of SARS-CoV, MERS-CoV and SARS-CoV-2 were found to bind to MASP-2, resulting in aberrant complement activation and
aggravated inflammatory lung injury. Complement hyper-activation was also observed in COVID-19 patients, and a suppressive effect was
observed when the deteriorating patients were treated with anti-C5a monoclonal antibody.

Lam [74]a SARS-CoV-2 Compared to healthy donors, the amount red blood cells with bound C3b and C4d were markedly elevated in hospitalized COVID-19 patients, and
had increased even further by day 7.

Abbreviations: CoV= coronavirus, COVID= coronavirus disease, MASP=mannan-binding lectin serine protease, MERS=Middle East respiratory syndrome,
SARS= severe acute respiratory syndrome.

a Preprint not yet peer-reviewed.

A. Fletcher-Sandersjöö and B.-M. Bellander Thrombosis Research 194 (2020) 36–41

40

https://doi.org/10.1038/s41577-020-0320-7
https://doi.org/10.1038/s41577-020-0320-7
https://doi.org/10.1007/s00441-010-1034-0
https://doi.org/10.1111/jth.14768
https://doi.org/10.4049/jimmunol.177.7.4794
https://doi.org/10.1055/s-0038-1655974
https://doi.org/10.1111/cei.12663
https://doi.org/10.1177/1753425913502099
https://doi.org/10.1177/1753425913502099
https://doi.org/10.1159/000083842
https://doi.org/10.1159/000083842
https://doi.org/10.1371/journal.pone.0000623
https://doi.org/10.1371/journal.pone.0035690
https://doi.org/10.1016/j.molimm.2014.05.013
https://doi.org/10.1358/dnp.2004.17.7.863703
https://doi.org/10.1182/blood-2003-05-1551
https://doi.org/10.1172/JCI111360
https://doi.org/10.1097/00001721-200106000-00005
https://doi.org/10.1097/00001721-200106000-00005
https://doi.org/10.1111/j.1538-7836.2009.03334.x
https://doi.org/10.1111/j.1538-7836.2009.03334.x
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0080
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0080
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0085
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0085
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0085
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0085
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0090
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0090
https://doi.org/10.1182/blood-2016-11-749879
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0100
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0100
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0100
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0105
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0105
https://doi.org/10.1097/SHK.0000000000000675
https://doi.org/10.1097/SHK.0000000000000675
https://doi.org/10.3390/ijms21051596
https://doi.org/10.3390/ijms21051596
https://doi.org/10.1016/j.smim.2013.05.006
https://doi.org/10.1016/j.smim.2013.05.006
https://doi.org/10.1097/SHK.0000000000001127
https://doi.org/10.1097/SHK.0000000000001127
https://doi.org/10.1097/00001721-200212000-00007
https://doi.org/10.1097/00001721-200212000-00007
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0135
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0135
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0135
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0135
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0140
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0140
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0140
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0140
https://doi.org/10.1172/JCI117430
https://doi.org/10.1172/JCI117430


traumatic brain injury: a review, J. Neuroinflammation. 15 (2018), https://doi.org/
10.1186/s12974-018-1066-z.

[32] M. Huber-Lang, J.D. Lambris, P.A. Ward, Innate immune responses to trauma re-
view-article, Nat. Immunol. 19 (2018) 327–341, https://doi.org/10.1038/s41590-
018-0064-8.

[33] M.M. Krem, E. Di Cera, Evolution of enzyme cascades from embryonic development
to blood coagulation, Trends Biochem. Sci. 27 (2002) 67–74, https://doi.org/10.
1016/s0968-0004(01)02007-2.

[34] N.S. Merle, R. Noe, L. Halbwachs-Mecarelli, V. Fremeaux-Bacchi, L.T. Roumenina,
Complement system part II: role in immunity, Front. Immunol. 6 (2015), https://
doi.org/10.3389/fimmu.2015.00257.

[35] V. Afshar-Kharghan, The role of the complement system in cancer, J. Clin. Invest.
127 (2017) 780–789, https://doi.org/10.1172/JCI90962.

[36] S. Dzik, Complement and coagulation: cross talk through time, Transfus. Med. Rev.
33 (2019) 199–206, https://doi.org/10.1016/j.tmrv.2019.08.004.

[37] R.J. Sauter, M. Sauter, Functional relevance of the Anaphylatoxin receptor C3aR for
platelet function and arterial thrombus formation marks an intersection point be-
tween innate immunity and thrombosis, Circulation. 138 (2018) 1720–1735,
https://doi.org/10.1161/CIRCULATIONAHA.118.034600.

[38] U. Amara, D. Rittirsch, M. Flierl, U. Bruckner, A. Klos, F. Gebhard, J.D. Lambris,
M. Huber-Lang, Interaction between the coagulation and complement system, Adv.
Exp. Med. Biol. 632 (2008) 71–79.

[39] M. Huber-Lang, J.V. Sarma, F.S. Zetoune, D. Rittirsch, T.A. Neff, S.R. McGuire,
J.D. Lambris, R.L. Warner, M.A. Flierl, L.M. Hoesel, F. Gebhard, J.G. Younger,
S.M. Drouin, R.A. Wetsel, P.A. Ward, Generation of C5a in the absence of C3: a new
complement activation pathway, Nat. Med. 12 (2006) 682–687, https://doi.org/10.
1038/nm1419.

[40] U. Amara, M.A. Flierl, D. Rittirsch, A. Klos, H. Chen, B. Acker, U.B. Brückner,
B. Nilsson, F. Gebhard, J.D. Lambris, M. Huber-Lang, Molecular intercommunica-
tion between the complement and coagulation systems, J. Immunol. 185 (2010)
5628–5636, https://doi.org/10.4049/jimmunol.0903678.

[41] J.H. Foley, E.M. Conway, Cross talk pathways between coagulation and in-
flammation, Circ. Res. 118 (2016) 1392–1408, https://doi.org/10.1161/
CIRCRESAHA.116.306853.

[42] J.H. Foley, B.L. Walton, M.M. Aleman, A.M. O'Byrne, V. Lei, M. Harrasser,
K.A. Foley, A.S. Wolberg, E.M. Conway, Complement activation in arterial and
venous thrombosis is mediated by plasmin, EBioMedicine. 5 (2016) 175–182,
https://doi.org/10.1016/j.ebiom.2016.02.011.

[43] C. Sardu, J. Gambardella, M.B. Morelli, X. Wang, R. Marfella, G. Santulli, Is COVID-
19 an endothelial disease? Clinical and basic evidence, Clin. Basic Evid. (2020),
https://doi.org/10.20944/PREPRINTS202004.0204.V1.

[44] S.A. Merrill, R.A. Brodsky, Complement-driven anemia: more than just paroxysmal
nocturnal hemoglobinuria, Hematology. 2018 (2018) 371–376, https://doi.org/10.
1182/asheducation-2018.1.371.

[45] J. Chapin, H.S. Terry, D. Kleinert, J. Laurence, The role of complement activation in
thrombosis and hemolytic anemias, Transfus. Apher. Sci. 54 (2016) 191–198,
https://doi.org/10.1016/j.transci.2016.04.008.

[46] O. Eriksson, C. Mohlin, B. Nilsson, K.N. Ekdahl, The human platelet as an innate
immune cell: interactions between activated platelets and the complement system,
Front. Immunol. 10 (2019), https://doi.org/10.3389/fimmu.2019.01590.

[47] N. Mehta, K. Uchino, S. Fakhran, M.A. Sattar, B.F. Branstetter, K. Au, J.S. Navratil,
B. Paul, M. Lee, K.M. Gallagher, S. Manzi, J.M. Ahearn, A.H. Kao, Platelet C4d is
associated with acute ischemic stroke and stroke severity, Stroke. 39 (2008)
3236–3241, https://doi.org/10.1161/STROKEAHA.108.514687.

[48] M.A. Petri, J. Conklin, T. O'Malley, T. Dervieux, Platelet-bound C4d, low C3 and
lupus anticoagulant associate with thrombosis in SLE, Lupus Sci. Med. 6 (2019),
https://doi.org/10.1136/lupus-2019-000318.

[49] A. Hill, A.E. Dezern, T. Kinoshita, R.A. Brodsky, Paroxysmal nocturnal haemoglo-
binuria, Nat. Rev. Dis. Prim. 3 (2017), https://doi.org/10.1038/nrdp.2017.28.

[50] K. Zhang, Y. Lu, K.T. Harley, M.H. Tran, Atypical hemolytic uremic syndrome: a
brief review, Hematol. Rep. 9 (2017) 62–67, https://doi.org/10.4081/hr.2017.
7053.

[51] T. Abe, A. Sasaki, T. Ueda, Y. Miyakawa, H. Ochiai, Complement-mediated
thrombotic microangiopathy secondary to sepsis-induced disseminated in-
travascular coagulation successfully treated with eculizumab a case report, Med.
(United States) 96 (2017), https://doi.org/10.1097/MD.0000000000006056.

[52] A. Kollias, K.G. Kyriakoulis, E. Dimakakos, G. Poulakou, G.S. Stergiou, K. Syrigos,
Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging
evidence and call for action, Br. J. Haematol. (2020), https://doi.org/10.1111/bjh.
16727.

[53] S. Cui, S. Chen, X. Li, S. Liu, F. Wang, Prevalence of venous thromboembolism in
patients with severe novel coronavirus pneumonia, J. Thromb. Haemost. (2020),
https://doi.org/10.1111/jth.14830.

[54] F.A. Klok, M.J.H.A. Kruip, N.J.M. van der Meer, M.S. Arbous, D.A.M.P.J. Gommers,
K.M. Kant, F.H.J. Kaptein, J. van Paassen, M.A.M. Stals, M.V. Huisman,
H. Endeman, Incidence of thrombotic complications in critically ill ICU patients
with COVID-19, Thromb. Res. (2020), https://doi.org/10.1016/j.thromres.2020.
04.013.

[55] J. Helms, C. Tacquard, F. Severac, I. Leonard-Lorant, M. Ohana, X. Delabranche,
H. Merdji, R. Clere-Jehl, M. Schenck, F. Fagot Gandet, S. Fafi-Kremer, V. Castelain,
F. Schneider, L. Grunebaum, E. Anglés-Cano, L. Sattler, P.-M. Mertes, F. Meziani,
High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter
prospective cohort study, Intensive Care Med. (2020), https://doi.org/10.1007/
s00134-020-06062-x.

[56] C. Edler, A.S. Schröder, M. Aepfelbacher, A. Fitzek, A. Heinemann, F. Heinrich,

A. Klein, F. Langenwalder, M. Lütgehetmann, K. Meißner, K. Püschel, J. Schädler,
S. Steurer, H. Mushumba, J.-P. Sperhake, Dying with SARS-CoV-2 infection-an
autopsy study of the first consecutive 80 cases in Hamburg, Germany, Int. J. Legal
Med. (2020), https://doi.org/10.1007/s00414-020-02317-w.

[57] L. Mao, H. Jin, M. Wang, Y. Hu, S. Chen, Q. He, J. Chang, C. Hong, Y. Zhou,
D. Wang, X. Miao, Y. Li, B. Hu, Neurologic manifestations of hospitalized patients
with coronavirus disease 2019 in Wuhan, China, JAMA Neurol. (2020), https://doi.
org/10.1001/jamaneurol.2020.1127.

[58] A.E. Merkler, N.S. Parikh, S. Mir, A. Gupta, H. Kamel, E. Lin, J. Lantos, E.J. Schenck,
P. Goyal, S.S. Bruce, J. Kahan, K.N. Lansdale, N.M. LeMoss, S.B. Murthy, P.E. Stieg,
M.E. Fink, C. Iadecola, A.Z. Segal, T.R. Campion, I. Diaz, C. Zhang, B.B. Navi, Risk of
Ischemic Stroke in Patients With Covid-19 Versus Patients With Influenza, (2020),
https://doi.org/10.1101/2020.05.18.20105494.

[59] C. Bavishi, R.O. Bonow, V. Trivedi, J.D. Abbott, F.H. Messerli, D.L. Bhatt, Acute
myocardial injury in patients hospitalized with COVID-19 infection: a review, Prog.
Cardiovasc. Dis. (2020), https://doi.org/10.1016/j.pcad.2020.05.013.

[60] Y. Deng, W. Liu, K. Liu, Y.-Y. Fang, J. Shang, L. Zhou, K. Wang, F. Leng, S. Wei,
L. Chen, H.-G. Liu, Clinical characteristics of fatal and recovered cases of cor-
onavirus disease 2019 (COVID-19) in Wuhan, China, Chin. Med. J. (Engl.) (2020) 1,
https://doi.org/10.1097/cm9.0000000000000824.

[61] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang, B. Song, X. Gu,
L. Guan, Y. Wei, H. Li, X. Wu, J. Xu, S. Tu, Y. Zhang, H. Chen, B. Cao, Clinical course
and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a
retrospective cohort study, Lancet. 395 (2020) 1054–1062, https://doi.org/10.
1016/S0140-6736(20)30566-3.

[62] W. Guan, Z. Ni, Y. Hu, W. Liang, C. Ou, J. He, L. Liu, H. Shan, C. Lei, D.S.C. Hui,
B. Du, L. Li, G. Zeng, K.-Y. Yuen, R. Chen, C. Tang, T. Wang, P. Chen, J. Xiang, S. Li,
J. Wang, Z. Liang, Y. Peng, L. Wei, Y. Liu, Y. Hu, P. Peng, J. Wang, J. Liu, Z. Chen,
G. Li, Z. Zheng, S. Qiu, J. Luo, C. Ye, S. Zhu, N. Zhong, Clinical characteristics of
coronavirus disease 2019 in China, N. Engl. J. Med. (2020), https://doi.org/10.
1056/nejmoa2002032.

[63] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei,
J. Xia, T. Yu, X. Zhang, L. Zhang, Epidemiological and clinical characteristics of 99
cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study,
Lancet. 395 (2020) 507–513, https://doi.org/10.1016/S0140-6736(20)30211-7.

[64] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu,
Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao,
L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao, Clinical features of
patients infected with 2019 novel coronavirus in Wuhan, China, Lancet. 395 (2020)
497–506, https://doi.org/10.1016/S0140-6736(20)30183-5.

[65] C. Wu, X. Chen, Y. Cai, J. Xia, X. Zhou, S. Xu, H. Huang, L. Zhang, X. Zhou, C. Du,
Y. Zhang, J. Song, S. Wang, Y. Chao, Z. Yang, J. Xu, X. Zhou, D. Chen, W. Xiong,
L. Xu, F. Zhou, J. Jiang, C. Bai, J. Zheng, Y. Song, Risk factors associated with acute
respiratory distress syndrome and death in patients with coronavirus disease 2019
pneumonia in Wuhan, China, JAMA Intern. Med. (2020), https://doi.org/10.1001/
jamainternmed.2020.0994.

[66] D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng,
Y. Xiong, Y. Zhao, Y. Li, X. Wang, Z. Peng, Clinical characteristics of 138 hospita-
lized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China,
JAMA - J. Am. Med. Assoc. 323 (2020) 1061–1069, https://doi.org/10.1001/jama.
2020.1585.

[67] H. Han, L. Yang, R. Liu, F. Liu, K. Wu, J. Li, X. Liu, C. Zhu, Prominent changes in
blood coagulation of patients with SARS-CoV-2 infection, Clin. Chem. Lab. Med. 0
(2020), https://doi.org/10.1515/cclm-2020-0188.

[68] L. Spiezia, A. Boscolo, F. Poletto, L. Cerruti, I. Tiberio, E. Campello, P. Navalesi,
P. Simioni, COVID-19-related severe hypercoagulability in patients admitted to
intensive care unit for acute respiratory failure, Thromb. Haemost. (2020), https://
doi.org/10.1055/s-0040-1710018.

[69] M. Xiong, X. Liang, Y. Wei, Changes in blood coagulation in patients with severe
coronavirus disease 2019 (COVID-19): a meta-analysis, Br. J. Haematol. (2020),
https://doi.org/10.1111/bjh.16725 (bjh.16725).

[70] L.E. Gralinski, T.P. Sheahan, T.E. Morrison, V.D. Menachery, K. Jensen, S.R. Leist,
A. Whitmore, M.T. Heise, R.S. Baric, Complement activation contributes to severe
acute respiratory syndrome coronavirus pathogenesis, MBio. 9 (2018), https://doi.
org/10.1128/mBio.01753-18.

[71] Y. Jiang, G. Zhao, N. Song, P. Li, Y. Chen, Y. Guo, J. Li, L. Du, S. Jiang, R. Guo,
S. Sun, Y. Zhou, Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-
transgenic mice infected with MERS-CoV, Emerg. Microbes Infect. 7 (2018) 77,
https://doi.org/10.1038/s41426-018-0063-8.

[72] C. Magro, J.J. Mulvey, D. Berlin, G. Nuovo, S. Salvatore, J. Harp, A. Baxter-
Stoltzfus, J. Laurence, Complement associated microvascular injury and thrombosis
in the pathogenesis of severe COVID-19 infection: a report of five cases, Transl. Res.
(2020), https://doi.org/10.1016/j.trsl.2020.04.007.

[73] T. Gao, M. Hu, X. Zhang, H. Li, L. Zhu, H. Liu, Q. Dong, Z. Zhang, Z. Wang, Y. Hu,
Y. Fu, Y. Jin, K. Li, S. Zhao, Y. Xiao, S. Luo, L. Li, L. Zhao, J. Liu, H. Zhao, Y. Liu,
W. Yang, J. Peng, X. Chen, P. Li, Y. Liu, Y. Xie, J. Song, L. Zhang, Q. Ma, X. Bian,
W. Chen, X. Liu, Q. Mao, C. Cao, Highly pathogenic coronavirus N protein ag-
gravates lung injury by MASP-2-mediated complement over-activation, (2020),
https://doi.org/10.1101/2020.03.29.20041962.

[74] L. Metthew Lam, S.J. Murphy, L. Kuri-Cervantes, A.R. Weisman, C.A.G. Ittner,
J.P. Reilly, M. Betina Pampena, M.R. Betts, E. John Wherry, W.-C. Song,
J.D. Lambris, D.B. Cines, N.J. Meyer, N.S. Mangalmurti, Erythrocytes Reveal
Complement Activation in Patients With COVID-19, (2020), https://doi.org/10.
1101/2020.05.20.20104398.

A. Fletcher-Sandersjöö and B.-M. Bellander Thrombosis Research 194 (2020) 36–41

41

https://doi.org/10.1186/s12974-018-1066-z
https://doi.org/10.1186/s12974-018-1066-z
https://doi.org/10.1038/s41590-018-0064-8
https://doi.org/10.1038/s41590-018-0064-8
https://doi.org/10.1016/s0968-0004(01)02007-2
https://doi.org/10.1016/s0968-0004(01)02007-2
https://doi.org/10.3389/fimmu.2015.00257
https://doi.org/10.3389/fimmu.2015.00257
https://doi.org/10.1172/JCI90962
https://doi.org/10.1016/j.tmrv.2019.08.004
https://doi.org/10.1161/CIRCULATIONAHA.118.034600
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0185
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0185
http://refhub.elsevier.com/S0049-3848(20)30269-3/rf0185
https://doi.org/10.1038/nm1419
https://doi.org/10.1038/nm1419
https://doi.org/10.4049/jimmunol.0903678
https://doi.org/10.1161/CIRCRESAHA.116.306853
https://doi.org/10.1161/CIRCRESAHA.116.306853
https://doi.org/10.1016/j.ebiom.2016.02.011
https://doi.org/10.20944/PREPRINTS202004.0204.V1
https://doi.org/10.1182/asheducation-2018.1.371
https://doi.org/10.1182/asheducation-2018.1.371
https://doi.org/10.1016/j.transci.2016.04.008
https://doi.org/10.3389/fimmu.2019.01590
https://doi.org/10.1161/STROKEAHA.108.514687
https://doi.org/10.1136/lupus-2019-000318
https://doi.org/10.1038/nrdp.2017.28
https://doi.org/10.4081/hr.2017.7053
https://doi.org/10.4081/hr.2017.7053
https://doi.org/10.1097/MD.0000000000006056
https://doi.org/10.1111/bjh.16727
https://doi.org/10.1111/bjh.16727
https://doi.org/10.1111/jth.14830
https://doi.org/10.1016/j.thromres.2020.04.013
https://doi.org/10.1016/j.thromres.2020.04.013
https://doi.org/10.1007/s00134-020-06062-x
https://doi.org/10.1007/s00134-020-06062-x
https://doi.org/10.1007/s00414-020-02317-w
https://doi.org/10.1001/jamaneurol.2020.1127
https://doi.org/10.1001/jamaneurol.2020.1127
https://doi.org/10.1101/2020.05.18.20105494
https://doi.org/10.1016/j.pcad.2020.05.013
https://doi.org/10.1097/cm9.0000000000000824
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1056/nejmoa2002032
https://doi.org/10.1056/nejmoa2002032
https://doi.org/10.1016/S0140-6736(20)30211-7
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1001/jamainternmed.2020.0994
https://doi.org/10.1001/jamainternmed.2020.0994
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1515/cclm-2020-0188
https://doi.org/10.1055/s-0040-1710018
https://doi.org/10.1055/s-0040-1710018
https://doi.org/10.1111/bjh.16725
https://doi.org/10.1128/mBio.01753-18
https://doi.org/10.1128/mBio.01753-18
https://doi.org/10.1038/s41426-018-0063-8
https://doi.org/10.1016/j.trsl.2020.04.007
https://doi.org/10.1101/2020.03.29.20041962
https://doi.org/10.1101/2020.05.20.20104398
https://doi.org/10.1101/2020.05.20.20104398

	Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review
	Introduction
	The complement system
	Complement-mediated thrombosis
	Complement and the coagulation cascade
	Complement and platelets
	Complement and fibrinolysis
	Complement and endothelial activation
	Clinical examples of complement-mediated thrombosis

	Thrombosis and hypercoagulability in COVID-19
	Complement activation in coronavirus infections
	Discussion
	Abbreviations
	Author contributions
	Funding
	Acknowledgments
	mk:H1_17
	Declaration of competing interest
	mk:H1_19
	Statement
	mk:H1_21
	References




