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COVID-19 is, in the end, an endothelial disease
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The vascular endothelium provides the crucial interface between the blood compartment and tissues, and displays a series of remarkable

properties that normally maintain homeostasis. This tightly regulated palette of functions includes control of haemostasis, fibrinolysis, vaso-

motion, inflammation, oxidative stress, vascular permeability, and structure. While these functions participate in the moment-to-moment

regulation of the circulation and coordinate many host defence mechanisms, they can also contribute to disease when their usually

homeostatic and defensive functions over-reach and turn against the host. SARS-CoV-2, the aetiological agent of COVID-19, causes the

current pandemic. It produces protean manifestations ranging from head to toe, wreaking seemingly indiscriminate havoc on multiple

organ systems including the lungs, heart, brain, kidney, and vasculature. This essay explores the hypothesis that COVID-19, particularly in

the later complicated stages, represents an endothelial disease. Cytokines, protein pro-inflammatory mediators, serve as key danger signals

that shift endothelial functions from the homeostatic into the defensive mode. The endgame of COVID-19 usually involves a cytokine

storm, a phlogistic phenomenon fed by well-understood positive feedback loops that govern cytokine production and overwhelm

counter-regulatory mechanisms. The concept of COVID-19 as an endothelial disease provides a unifying pathophysiological picture of this

raging infection, and also provides a framework for a rational treatment strategy at a time when we possess an indeed modest evidence

base to guide our therapeutic attempts to confront this novel pandemic.
...................................................................................................................................................................................................
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Introduction

The vascular endothelium provides the crucial interface between the

blood compartment and tissues. The endothelial monolayer that lines

the intima of arteries, veins, and microvessels measures up to

7000 m2 in surface area.1 The endothelium possesses a series of re-

markable properties that contribute capitally to homeostasis

(Figure 1, left). The endothelium furnishes one of the only surfaces, ei-

ther natural or synthetic, that under physiological conditions main-

tains blood in a liquid state during prolonged contact. The

endothelium displays a tightly regulated palette of functions that con-

trol vasomotion, inflammation, oxidative stress, vascular permeability,

and structure.2 The endothelial cells also provide a crucial interface in

host defences, forming the front line of encounter with bloodborne

pathogens, thus sensing danger threatening the organism in a con-

certed fashion, sending early warning signals of infection, invasion, or

injury.3 While these functions participate in the moment-to-moment

regulation of the circulation and coordinate many host defence

mechanisms, they can also contribute to disease when their usually

homeostatic and defensive functions over-reach and turn against the

host (Figure 1, middle and right). 4,5

SARS-CoV-2, the aetiological agent of COVID-19, causes the cur-

rent pandemic. It produces protean manifestations ranging from head

to toe, wreaking seemingly indiscriminate havoc on multiple organ

systems, in particular the lungs, heart, brain, kidney, and vasculature.

This essay will explore the hypothesis that COVID-19, particularly in

the later complicated stages, represents an endothelial disease. This

concept not only provides a unifying pathophysiological picture of

this raging infection but also furnishes a framework for a rational

treatment strategy at a time when we possess an indeed modest evi-

dence base to guide our therapeutic attempts to confront this novel

pandemic.
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Figure 1 The left side of the diagram depicts a resting endothelial monolayer with the endothelial cells of squamous morphology resting on an in-

tact basement membrane. The homeostatic mechanisms displayed by the resting endothelium include the listed properties as detailed in the text.

When the endothelial cells undergo the cytopathic effect of a viral infection such as SARS-CoV-2, or encounter pathogen-associated molecular pat-

terns (PAMPs) derived from viruses or bacteria such as lipopolysaccharide, proinflammatory cytokines such as IL-1 or TNF, or damage-associated

molecular patterns (DAMPs) derived from dead or dying cells, the endothelial cells become activated. The endothelial cells display more columnar

morphology. They can express adhesion molecules that attract leucocytes and chemokines that direct their migration into the subendothelial space.

Sloughing of endothelial cells uncovers the thrombogenic basement membrane. Adherent neutrophils can undergo formation of neutrophil extracel-

lular traps that provide an amplifier for endothelial damage mediated in part by IL-1a. Inflammatory activation of endothelial cells can disrupt VE-cad-

herin largely responsible for the integrity of the endothelial barrier function.62 Activated endothelial cells can also express matrix metalloproteinases

that can degrade the basement membrane and further interrupt endothelial barrier function. In small vessels, such as those that embrace alveoli in

the lung, this impaired barrier function can lead to capillary leak. These various disturbances in endothelial function, depicted in the middle part of the

diagram, lead to end organ damage including adult respiratory distress syndrome and thrombosis in the lungs, predispose to plaque rupture and

thrombosis in coronary arteries, and affect the microvasculature leading to myocardial ischaemia and damage. The thrombotic diathesis provoked by

endothelial dysfunction can also predispose towards strokes. Microvascular as well macrovascular injury can potentiate acute renal failure. Hepatic

dysfunction can also result from microvascular thrombosis among other mechanisms. Deep venous thrombosis can occur as endothelial disfunction

represents an important part of Virchow’s triad, and sets the stage for pulmonary embolism. Thus, loss of the endothelial protective and unleashing

of the mechanisms depicted can lead to multiorgan system failure that characterizes the advanced stages of COVID-19.

COVID-19 is, in the end, an endothelial disease 3039
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The endothelium participates
pivotally in thrombosis and
fibrinolysis

The normal endothelial surface owes its remarkable haemocompati-

bility to a tightly orchestrated set of functions.6 Heparan sulfate pro-

teoglycans decorate the surface of the endothelium. These

molecules bind antithrombin III, as do heparinoids that we use daily in

practice as an anticoagulant. The endothelial surface bears thrombo-

modulin, which binds thrombin and stimulates the protein C–protein

S anticoagulant axis.1,3 The endothelial cell can also express a tissue

factor pathway inhibitor that can antagonize triggering of thrombosis

by the potent procoagulant protein tissue factor.7

Endothelial cells possess an endogenous mechanism for combat-

ting platelet activation. This function depends on endothelial surface

expression of an ecto-ADPase, CD39, as well as the release of nitric

oxide and prostacyclin.8,9 Together, this array of anticoagulant and

antithrombotic properties accounts for much of the ability of the

endothelial cell to combat intravascular blood clot formation under

normal circumstances. Should a stray thrombus form on the intimal

lining of a blood vessel, the endothelial cells can express plasminogen

activators that can boost endogenous fibrinolysis.10 Endothelial cells

can produce both tissue-type plasminogen activator (tPA) and uro-

kinase plasminogen activator (uPA),11 and, through the release of ni-

tric oxide by platelet-derived substances, inhibit platelet function and

increase local blood flow to flush away an evolving clot.

Although the normal endothelium possesses this palette of anti-

coagulant, antithrombotic, and profibrinolytic attributes, the balance

between these salutary functions and an opposite panel of properties

that promote thrombus accumulation can change on a dynamically

regulated basis. The endothelial cell usually possesses little procoagu-

lant potential. However, when stimulated by proinflammatory cyto-

kines, pathogen-associated molecular patterns such as bacterial

endotoxins, or neutrophil extracellular traps (NETs; see below), the

endothelial cell can express and in turn exert tissue factor activ-

ity.12,13 Tissue factor activates the coagulation system by amplifying

many-fold the enzymatic capacity of factors VII and X, triggering

thrombin generation and clot formation.14 The endothelial cell also

stores pre-formed von Willebrand factor (vWf) in intracellular gran-

ules called Weibel–Palade bodies. Upon activation, the endothelial

cells can release this large protein that in higher molecular weight

multimers provides a potent bridge for platelet aggregates and

thrombus assembly, favouring formation of an organized clot.15

While under usual circumstances the antiaggregatory arachidonate

product prostacyclin (PGI2) dominates endothelial vasoactive prosta-

noid production, the endothelial cell can also produce thromboxane,

a pro-platelet aggregatory and vasoconstrictor prostaglandin.16 The

activated endothelial cell can also manufacture plasminogen activator

inhibitor-1 (PAI-1), which can antagonize the endogenous fibrinolytic

properties conferred upon the endothelial surface by the expression

of uPA and tPA, as noted above. Thus, while ordinarily programmed

to combat blood clotting and thrombus accumulation, the endothe-

lium—when activated by inflammatory or infectious signals—can

exert an opposite battery of functions. While critically important in

staunching haemorrhage or other injury, during disease the

endothelial surface can promote clotting of arteries, microvessels,

and veins, contributing critically to thrombo-embolism.

The endothelial vasodilator/
vasoconstrictor balance

Under normal conditions, the endothelial cells promote tonic vaso-

dilatation through the well-known mechanism of production of the

vasodilatory gas nitric oxide from L-arginine via the activity of endo-

thelial nitric oxide synthase.17 The endothelial cell can also elaborate

diverse hyperpolarizing factors that promote relaxation of smooth

muscle and hence dilatation of muscular arteries. As noted above,

the normal endothelial cells also secrete PGI2 that, in addition to its

antiaggregatory effects on platelets, potently vasodilates.18 This array

of vasodilatory actions can also modulate moment-to-moment local

blood flow in a paracrine fashion. Numerous mechanisms can inter-

fere with endothelial-dependent vasodilatation. These mechanisms

range from impaired nitric oxide synthase expression19 and/or activ-

ity to inactivation of nitric oxide or its conversion to highly pro-

oxidant compounds by encountering pro-oxidant species such as

superoxide anion, yielding the potent pro-oxidant peroxynitrate.20,21

Moreover, the endothelial cell can produce one of the most potent

vasoconstrictors known, endothelin-1, in response to angiotensin II,

thrombin, or oxidized LDL.22,23While key in maintaining normal vas-

cular homeostasis, during disease the salutary endothelium’s func-

tions can give way to inappropriate vasoconstriction contributing to

tissue ischaemia.

The endothelial inflammatory
balance

Positioned at the key interface between the blood and tissues, the

endothelium normally resists prolonged contact with the leucocytes

that abound in blood that bathes the intimal surface.3,24 Stationed as

the sentinel, the endothelium serves as the portal governing the entry

of leucocytes into tissues to combat invaders, microbial or viral, and

to help repair injury and heal wounds. The interplay of the endothe-

lium with leucocyte mediators of innate and adaptive immunity

depends on a series of leucocyte adhesion molecules expressed at

negligible levels under physiological circumstances. Members of the

selectin class of leucocyte adhesion molecules slow the transit of

blood leucocytes past the endothelial surface by mediating rolling of

these cells. E-selectin (CD62E) causes polymorphonuclear leuco-

cytes to tarry on the endothelial surface. P-selectin (CD62P) and L-

selectin (CD62L) also mediate interaction of the endothelial surface

with various classes of blood leucocytes. The elevated expression of

these endothelial–leucocyte adhesion molecules depends upon irrita-

tive stimuli, principally proinflammatory cytokines such as interleu-

kin-1a (IL-1a) and IL-1b or tumour necrosis factor-a (TNF-a).

The firm binding of leucocytes to the activated endothelial surface

depends upon adhesion molecules of the IgG superfamily. These

molecules include intercellular adhesion molecule-1 (ICAM-1,

CD54) and vascular cell adhesion molecule-1 (VCAM-1, CD106).

3040 P. Libby and T Lüscher
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Integrins associated with the endothelial surface also participate in

these adhesive interactions and furnish cognate ligands for the adhe-

sion molecules.25 Once tightly bound to the endothelial surface,

chemoattractant cytokines of various classes can beckon the bound

cells to traverse the endothelial monolayer and enter tissues where

they can combat invaders or contribute to tissue repair.26

Antioxidant/pro-oxidant balance
in the endothelium

The endothelial cell possesses a number of defence mechanisms that

lower local oxidative stress.When subjected to normal laminar shear

stress, the endothelium produces superoxide dismutase that scav-

enges the important reactive oxygen species O–
2.
24 The endothelial

cell can also express glutathione peroxidases that can mitigate oxida-

tive stress.27 Likewise, haem oxygenase provides another mechanism

by which the endothelial cell can resist local oxidative stress.28,29 In

contrast, when stimulated by proinflammatory cytokines and other

agonists, the endothelial cell can mobilize NADPH oxidases that gen-

erate superoxide anions, contributing to local oxidative stress.30 As

with other beneficial properties, the endothelium can also contribute

to disease through impaired antioxidant defences or actual gener-

ation of reactive oxygen species, as is the case in hypertension,31

hyperlipidaemia, and diabetes,32 among other cardiovascular

conditions.

Endothelial barrier function

Under physiological circumstances, the endothelial gateway selective-

ly regulates endothelial permeability and fosters vascular integrity. An

intact endothelial barrier depends on myriad mechanisms including

vascular endothelial-cadherin (VE-cadherin, CD144).33 A number of

derangements can threaten the integrity of this single-cell layer that

stands between the blood compartment and tissues. Impaired endo-

thelial viability can promote sloughing of endothelial cells and their

death by various mechanisms including pyroptosis and apoptosis.34,35

Among the stimuli for these pathways of programmed cell death are

proinflammatory cytokines and reactive oxygen species. Endothelial

cells can also perish due to accidental cell death or oncosis.

Regardless of the mechanism of endothelial injury, breaches in the

physical integrity of the monolayer can lead to capillary leak in the

microvasculature, overturning the usually semi-permeable properties

of the endothelium and contributing to inappropriate leakage of vas-

cular contents into the tissue compartment and extracellular

space.36,37

Cytokine storm: a perfect storm
in COVID-19

As noted in each of the foregoing sections, proinflammatory cyto-

kines conspire to elicit from endothelial cells a change from their

homeostatic functions to those that can contribute to thrombosis

and local tissue injury. Cytokines such as IL-1a and IL-1b, IL-6, and

TNF-a, among others, contribute critically to normal host defences,

but when produced inappropriately or in excess they can perturb all

of the carefully orchestrated protective functions of the normal

endothelium and potentiate pathological processes. The untram-

melled production of proinflammatory cytokines contributes to a

condition termed a cytokine storm (Figure 2). The pathophysiological

mechanisms of a cytokine storm depend on phenomena described in

the 1980s that centre on autoinduction of the primordial proinflam-

matory cytokine IL-1. IL-1 can induce its own gene expression, pro-

viding an amplification loop that can instigate a cytokine storm.38–

40IL-1 induces not only its own gene expression but also that of other

proinflammatory cytokines including TNF-a.41 In addition, IL-1 pro-

duced by endothelial cells and invading leucocytes can elicit the pro-

duction of chemoattractant molecules including the chemokines that

mediate the penetration of inflammatory cells into tissues.42IL-1 also

potently stimulates the production of another proinflammatory cyto-

kine, IL-6.43,44 This induction of IL-6 production by IL-1 provides an-

other amplification loop that contributes to the cascade of cytokine

overproduction that characterizes a cytokine storm.

In addition to local effects, IL-6 provides a proximal stimulus to the

acute phase response.45 This programne of protein synthesis elicited

in the hepatocyte by IL-6 boosts the synthesis of fibrinogen, the pre-

cursor of clots, of PAI-1, a major inhibitor of our endogenous fibrino-

lytic mediators, and of C-reactive protein, a biomarker of

inflammation that rises consistently in COVID-19.46 The havoc

wreaked by the cytokine storm thus not only affects local endothelial

function but can also provoke a prothrombotic and antifibrinolytic

imbalance in blood that favours thrombus accumulation. The compli-

cations of COVID-19 follow very closely the consequences of exces-

sive cytokine actions on endothelial cells outlined above and

depicted in Figure 1.

The initial characterization of COVID-19 as a pneumonitis incor-

porates the notion of disordered endothelial function.While initial in-

fection of type I and II pneumocytes and alveolar macrophages no

doubt participates in the initiation of infection, disordered endothelial

function certainly contributes to the ongoing ravages of SARS-CoV-2

in the lung as elsewhere. Impaired endothelial barrier function can

contribute to protein accumulation in the alveolar space and fluid ac-

cumulation and impaired oxygenation of the blood. IL-1 stimulation

reduces VE-cadherin, dubbed the guardian of integrity of the endo-

thelium. This finding links a cytokine storm directly to capillary leak,

and aggravation of the adult respiratory syndrome (ARDS) picture

that advanced COVID-19 presents.33,47 The deranged balance in the

prothrombotic/antithrombotic properties of the endothelium can

certainly contribute to thrombosis in situ in the pulmonary vascula-

ture, as occurs in COVID-19.48 Impaired gateway function of the

endothelium for traversal of leucocytes into tissues clearly partici-

pates in pneumonitis.

However, we now recognize that SARS-CoV-2’s destructive

actions range far and wide beyond the pulmonary parenchyma.

Alterations in endothelial thrombotic/fibrinolytic balance can predis-

pose to thrombosis not only in the pulmonary circulation but also in

peripheral veins and arteries of the cerebral circulation, causing un-

heralded strokes in apparently healthy young people and doubtless

contributing to the local and patchy embarrassment of blood flow in

‘COVID toes’ that probably represent microvascular dysfunction

with tissue ischaemia. In between the brain and distal lower extrem-

ities, thromboses can occur in all arterial beds within the

COVID-19 is, in the end, an endothelial disease 3041
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microvasculature, including that of the coronary circulation, and that

of the kidneys. Venous thrombosis and pulmonary embolism also

commonly complicate COVID-19, pathological processes that clearly

depend on deranged endothelial functions.49 NETs induced by in-

flammatory cytokines activate procoagulant functions of endothelial

cells, and contribute to coagulation and the formation of the typically

tightly organized thrombi in COVID-19. Thus, disordered endothelial

homeostasis provoked by cytokines provides a common thread in

numerous complications of COVID-19.13,50–52

Endothelial functions as a
therapeutic target

To combat the adverse balance between thrombotic and fibrinolytic

properties of the endothelium, numerous anticoagulant and antipla-

telet therapies are under evaluation in ongoing and planned clinical

trials in COVID-19. Key questions that require an answer in this do-

main are which agents to give to whom and in what doses, given the

narrow therapeutic window of such agents, and the common con-

comitant conditions that elevate bleeding risk in many COVID-19

patients.

In view of the central role of inflammatory mediators in the com-

plications of COVID-19, anti-inflammatory therapies merit careful

clinical evaluation. Glucocorticoids and colchicine exert generalized

anti-inflammatory actions and show promise in the treatment of

patients with advanced COVID-19.53,54 Statins have direct anti-

inflammatory effects beyond their lipid-lowering actions, mediated by

inhibition of prenylation of small G proteins or induction of transcrip-

tion factors such as KLF-2 that promote homeostatic endothelial

functions.55Non-randomized treatment with statins yielded prelimin-

ary retrospective evidence of improved outcomes in COVID-19, as

well as reductions in biomarkers of inflammation.56

Targeted inhibition of cytokines, major effectors of endothelial

activation, represents a more focused approach than generalized

anti-inflammatory agents. IL-1 not only induces leucocyte adhesion

molecules but, by reducing VE-cadherin production, can contribute

to impaired endothelial barrier function and thus capillary leak, a

major issue that complicates COVID-19 pneumonitis.47 Agents that

inhibit the inflammasome–IL-1b–IL-6 pathway may thus comprise a

more endothelial-directed approach to treatment of COVID-19.

Some clinical trials that use such strategies have already yielded pre-

liminary results; some, but not all, indicate signals of efficacy.

Colchicine may act in part as an inhibitor of the assembly of the

inflammasome. Small, non-randomized studies of a recombinant

form of the endogenous IL-1 receptor antagonist, anakinra, have fur-

nished sufficient encouragement to merit further definitive investiga-

tion.57,58 Anakinra blocks both IL-1a and IL-1b, and requires daily

dosing. Canakinumab, a selective IL-1b antibody, has a much longer

biological half-life than anakinra, rendering it less readily reversible.

Several studies investigating canakinumab in COVID-19 are under-

way (NCT04362813 and NCT04365153.)

Downstream of IL-1, antibodies that interfere with IL-6 signalling

have also shown signs of benefit in some but not all preliminary stud-

ies, although this as well as other anticytokine therapies may entail an

increased risk of superinfection.59,60 Other anti-IL-6 strategies also

warrant consideration.61 Upon inflammatory stimulation, vascular

endothelial and smooth muscle cells produce large amounts of IL-6;

thus, blocking signalling of this distal mediator can limit local vascular

amplification of inflammatory responses, including in the lung. IL-6

also triggers the acute phase response, boosting fibrinogen and PAI-1

production, and thus favours clot formation and persistence

(Figure 2).

The pivotal roles of these proinflammatory mediators in host

defences render these initial results plausible and promising. Yet,

rigorous, controlled, and prospective clinical trials must evaluate the

balance between the potential benefits by forestalling the consequen-

ces of cytokine storm versus the potential of lowering defences
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Hepatocyte 
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Response

NLRP3 inflammasome
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Microvascular – e.g. heart, kidney

Venous – DVT and PE

D-dimer

Biomarker of

thrombosis

PAMPs
DAMPs

IL-1 autoinduction

IL-1 also induces, TNF, CD154
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PAI 1 C
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therapies

Inflammasome
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Colchicine

Anti-IL-6

Statins

RAAS blockade

Anti-coagulants

Anti-platelet

agents

Anti-IL-1� & �

Anti-TNF �

H

A
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Figure 2 Cytokine storm. Proinflammatory cytokines such as IL-

1 and TNF-a induce each other’s gene expression, unleashing an

amplification loop that sustains the cytokine storm. The endothelial

cell is a key target of cytokines, as they induce action of a central

proinflammatory transcriptional hub, nuclear factor-jB. IL-1 also

causes substantial increases in production by endothelial and other

cells of IL-6, the instigator of the hepatocyte acute phase response.

The acute phase reactants include fibrinogen, the precursor of clot,

and PAI-1, the major inhibitor of our endogenous fibrinolytic sys-

tem. C-reactive protein, commonly elevated in COVID-19, pro-

vides a readily measured biomarker of inflammatory status. The

alterations in the thrombotic/fibrinolytic balance due to the acute

phase response promotes thrombosis in arteries, in the microvascu-

lature including that of organs such as the myocardium and kidney,

and in veins, causing deep vein thrombosis and predisposing to-

wards pulmonary embolism. Thus, the very same cytokines that

elicit abnormal endothelial functions can unleash the acute phase re-

sponse which together with local endothelial disfunction can con-

spire to cause the clinical complications of COVID-19. The right

side of this diagram aligns therapeutic agents that attack these mech-

anisms of the cytokine storm and may thus limit its devastating

consequences.
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.against bacterial superinfections that commonly complicate individu-

als with impaired pulmonary protective functions and remain subject

to the rigours of mechanical ventilation and endotracheal intubation.

In sum, we can envisage COVID-19 as a disease of the endothe-

lium, certainly with respect to its complications. This unifying hypoth-

esis can help to understand the complex pathophysiology of this

current plague and may also help to inform our therapeutic

approaches to combatting the consequences of SARS-CoV-2

infection.
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