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Summary
Edema is tissue swelling and is a common symptom in a variety of dis-
eases. Edema form due to accumulation of fluids, either through re-
duced drainage or increased vascular permeability. There are multiple 
vascular signalling pathways that regulate vessel permeability. An im-
portant mediator that increases vascular leak is the peptide hormone 
bradykinin, which is the principal agent in the swelling disorder hered-
itary angioedema. The disease is autosomal dominant inherited and 
presents clinically with recurrent episodes of acute swelling that can 

be life-threatening involving the skin, the oropharyngeal, laryngeal, 
and gastrointestinal mucosa. Three different types of hereditary an-
giodema exist in patients. The review summarises current knowledge 
on the pathophysiology of hereditary angiodema and focuses on re-
cent experimental and pharmacological findings that have led to a 
better understanding and new treatments for the disease.
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Hereditary angioedema

Hereditary angiodema (HAE) is a rare inherited disease, which is 
clinically characterised by recurrent acute swelling episodes result-
ing from increased vascular permeability. There are about 5,000 
affected individuals in Europe. The mechanisms that result in in-
creased vessel leak in HAE are controversial; however, excessive 
bradykinin (BK) formation due to pathological activation of the 
factor XII (FXII)-driven plasma contact system is a consistent 
finding in acute episodes of HAE. BK belongs to the kinin family 
and initiates signalling cascades that increase vascular permeabil-
ity and induce tissue swelling. Plasma levels of the peptide hor-
mone are elevated during the swelling attacks (1-5). HAE patients 
either carry mutations in the C1 esterase inhibitor (C1INH) pro-
tein (which is the major inhibitor of the plasma contact system 
proteases, HAE types I and II) or have a mutation in the protease 
factor (F)XII (that is the principal initiator of the plasma contact 
system, HAE type III). Plasma level of C1INH is reduced in HAE 
type I whereas a dysfunctional protein circulates in type II patient 
plasma. Clinical symptoms and swellings are largely similar among 
the various HAE types. Additionally, there are inherited HAE 
forms that are not linked to known mutations in C1INH or FXII. 
The identification of the disease-associated defects in these 
families awaits future investigations. Urticaria (itching) is not a 
typical feature in HAE patients, indicating that histamine is not of 
critical important for the pathology of the disease (6). It is often 

challenging to diagnosis HAE due to variations in the clinical pres-
entations. The swellings in HAE patients are highly variable re-
garding triggering factors, severity, frequency, and localisation.

Generation of kinins

Kinins are short-lived hormones that induce many characteristics 
of an inflammatory state, such as changes in blood pressure and 
vasodilation, pain sensations, leukocyte adhesion, and increased 
microvascular permeability (5). Kinins form a family of vasoactive 
peptides comprising BK, kallidin (Lys-BK) and their degradation 
products, respectively. Kinins are produced by two principal path-
ways: the nonapeptide BK is released by limited proteolysis from 
its precursor High-molecular-weight kininogen, (HK) by FXII-ac-
tivated plasma kallikrein (PK) on cell surfaces (7-9). In contrast to 
inducible generation of BK, the decapeptide kallidin is constitut-
ively produced by tissue kallikrein (TK) predominantly from its 
substrate low-molecular-weight kininogen (LK). HK and LK are 
splice products of the same gene (10) and accordingly kallidin and 
BK share the identical peptide-sequence with kallidin having one 
additional Lysine residue at its N-terminus. In vitro, kallidin can be 
rapidly converted to BK by kinin converting aminopeptidases, 
which cleave the N-terminal lysine residue (11) (▶ Figure 1).

Kininogens and kallikreins are proteins of the plasma contact 
system that encompasses FXII, and C1-esterase inhibitor (C1INH) 
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the major inhibitor of activated PK and FXII (12-14). The plasma 
contact system is a protease cascade that assembles on cell surface 
heparan- and chondroitin-sulfate type proteoglycans (15, 16). 
Other proteins such as the p33/gC1qR that lacks a transmembrane 
domain but bears a mitochondrial targeting sequence and is in-
volved in mitochondrial energy metabolism have been reported to 
bind HK. Overexpression of heparan sulfates largely increases HK 
cell binding. In contrast, overexpression of p33/gC1qR does not 
increase HK binding to transfected cells, challenging the in vivo 
relevance of p33/gC1qR as receptor for HK (15). BK production is 
started by FXII coming in contact to surfaces. FXII zymogen bind-
ing to negatively charged surfaces induces a conformational 
change in the molecule resulting in FXII activation (autoacti-
vation). Activated FXII (FXIIa) cleaves surface associated plasma 
prekallikrein to generate PK, which in turn reciprocally activates 
further FXII molecules, thereby amplifying the initial signal (17). 
Plasma prekallikrein and PK are surface-bound via HK. In a com-
plex with its substrate HK, PK cleaves the HK peptide bond 
Arg371-Ser372 at the C-terminus of the BK sequence (17). The 
proteolytic step generates a two-chain HK form and BK remains 
attached to the C-terminal end of the HK heavy chain (18). A sub-
sequent second PK-mediated cleavage at Lys362-Arg363 liberates 
BK from the heavy chain (19). Under physiological conditions, 
C1INH controls proteolytic activity of the contact system cascade 
by inactivating FXIIa and PK-mediated BK generation (14). 
C1INH is a member of the serpin protein family, which inhibits 
contact system proteases by irreversible binding to their enzymatic 
pockets (14). In addition to the BK-producing kallikrein-kinin sys-
tem (7, 17) the FXIIa-driven contact system triggers other plasma 
protease cascade such as the intrinsic pathway of coagulation, the 
fibrinolytic and the complement systems (17, 20).

Despite having a similar name, TK is nor structurally neither 
evolutionary related to PK (21). TK activations occur intracellul-
arly by evolutionary proteolysis of the serine protease precursor, 
tissue prekallikrein. However, the enzyme responsible for the con-
version in vivo has not been identified yet (22). Two candidate 
enzyme classes that have the capacity for activating tissue prekal-
likrein in vitro are serine proteases (trypsin, plasmin, PK or tissue 
kallikreins), and metalloproteinases (thermolysin) (23). Tissue-
type kallikreins form a large multigen family of structurally and 
functionally related serine proteases that are differentially express-
ed in a organ-specific pattern (24).

LK is the principal substrate of TK. The entire LK heavy chain 
that is composed of domains D1-D4 and a short stretch of domain 
5 are identical to sequences in HK. Compared to HK the light 
chain of LK is significantly shorter (626 vs. 409 residues) (25) and 
lacks the binding site for PK and FXI (12, 15, 26) that has been 
mapped to the extreme C-terminus of HK D6H domain (12, 27). 
TK-driven kallidin production contributes to maintain arterial 
pressure homeostasis (28). TK-deficient mice have reduced basal 
kinin levels and consistently arterial systolic blood pressure is elev-
ated (29). Intraventricular injection of TK triggers kinin-mediated 
arterial hypertension in rodent brains, suggesting a function of TK 
for maintaining pressure homeostasis in the central nervous circu-
latory system (30).

Receptors, signalling pathways and  
degradation of kinins
Kinins are ligands of to two distinct receptor types: kinin B2-re-
ceptor (B2R) and B1-receptor (B1R), respectively, are characte-
rised by seven transmembrane-spanning helices and are coupled 
to G proteins in most cells of the Gαq and Gαi families (31, 32). 
B1R expression is inducible and is largely up-regulated by cyto-
kines such as interleukin-1β (7, 11). Thus, B1R is exposed on cell 
surface in response to injury or inflammation. In contrast, B2R is 
constitutively expressed by various cell types, such as endothelial 
cells, vascular smooth muscle cells and cardiomyocytes (11). Lig-
and binding to B1R and B2R initiates signalling cascades that in-
crease vascular permeability and fluid efflux in humans (4, 5, 33), 
rats (34), and mice (3). Kinins also activate various other pro-in-
flammatory signalling pathways such as vessel dilatation, prostag-
landin E2 biosynthesis, and induction of chemotaxis of neutro-
phils (5, 11, 35).

Kinin-binding to B1R and B2R increases intracellular calcium 
([Ca2+]i) in smooth muscle and endothelial cells. [Ca2+]i levels are 
raised through the phospholipase C pathway by inositol 3-phos-
phate (IP3) formation and consecutive InsP3R-mediated Ca2+ re-
lease from intracellular stores. [Ca2+]i in turn can activate multiple 
signalling cascades, including the phospholipase A2 pathway that 
releases arachidonic acid that is converted to prostacyclines (e.g. 
PGI2) in a cyclooxygenase-dependent manner. BK also triggers ki-
nase C (PKC) activity (36) resulting in VASP-mediated disas-
sembly of cortical cytoskeletons (37) and VE-cadherin junctions 
(38). Similar BK/VASP-dependent pathways may also contribute 
to angiogenesis (39, 40). Increase in [Ca2+]i is a potent stimulator 
of endothelial nitric-oxide synthase (eNOS) resulting in NO-
driven protein kinase G activity and VASP phosphorylation (41, 
42). BK signalling increases Rac1-driven leakage (43). All these 
pathways have a role in BK-driven vasodilation and increased per-
meability (44).

Kininases degrade kinins, and one of the major kininases is 
kininase I (carboxypeptidase N) that removes the C-terminal argi-
nin residue both from BK and kallidin. The resulting peptides des-
Arg9-BK and des-Arg10-kallidin, respectively, do not longer bind to 
B2R. However, des-Arg9-BK and des-Arg10-kallidin are the princi-
pal agonists of B1R (33) (▶ Figure 1). Stimulation of B1R by des-
Arg9-BK and des-Arg10-kallidin increases vascular leakage simi-
larly as BK and kallidin binding to B2R (33).

Non-receptor bound kinins have short half-lifes of <1 minute in 
plasma (11, 45) and are rapidly metabolised by multiple endo- and 
exopeptidases (46). The major kinin-degrading enzyme is kininase 
II, also known as angiotensin converting-enzyme (ACE). ACE 
cleaves BK at two sites to produce breakdown producs such as the 
pentapeptide Arg1-Pro2-Pro3-Gly4-Phe5 and dipeptides 
Ser6-Pro7 and Phe8-Arg9. Kallidin is similarly processed to these 
dipeptides and the hexapeptide Lys-Arg-Pro-Pro-Gly-Phe (47). 
ACE generates biologically inactive kinin fragments (48) and elim-
inating kinin´s activity for activating B2R or B1R (11, 48) (▶ Fig-
ure 1). Other kinin-degrading enzymes are aminopeptidase P, di-
peptidyl peptidase IV and neutral endopeptidase (11).
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Bradykinin formation in HAE

The detailed pathophysiology underlying increased vascular leak 
in HAE patients is not completely understood. In addition to 
FXIIa-driven BK generation other pathways such as the intrinsic 
pathway of coagulation, the complement, or fibrinolytic systems 
may contribute (49). Genetic ablation of C1INH expression results 
in excessive BK production, which increases vascular permeability 
in humans (50) and mice (51). Mouse models with combined defi-
ciency in C1INH and kinin B2 receptors or treated with kinin re-
ceptor antagonists make the case that elevated vascular leakage in 
C1INH-dependent HAE forms is predominantly mediated by BK 
and due to aberrant B2R signalling (3). BK plasma levels are elev-
ated in acute swelling attacks, whereas BK levels in HAE patients 
are similar to healthy control individuals in the interval (remission 
phase) (52). Further evidence that BK signalling mediates edema 
formation in HAE originates from ACE inhibitor therapy. ACE in-
hibitors block ACE activity and thus interfere with degradation of 
BK. ACE inhibitor treatment is an established trigger for edema in 
HAE patients (53), individuals with impaired BK-metabolism (54) 
and HAE mouse models (3). Furthermore, acute swelling attacks 
in HAE patients respond to infusion of plasma purified or recom-

binant C1INH, B2R antagonists and PK inhibitors suggesting that 
the contact system mediates pathological BK production (55). To-
gether, these clinical, pharmacological and experimental findings 
make a strong case for BK being the principal if not exclusive 
mediator for acute swelling episodes in HAE (14).

HAE types

HAE (HAE [MIM #106100]) patients suffer from recurrent pain-
ful swelling episodes indicating that under some pathologic condi-
tions the contact system gets activated. The underlying mechan-
isms for the BK-driven swelling episodes are not entirely under-
stood but excessive BK-formation may be facilitated due to three 
distinct mechanisms: (i) hereditary deficiency in C1INH that is 
coded by the SERPING1 gene, (ii) a dysfunctional C1INH or (iii) a 
gain of function mutation in FXII. All these defects increase the 
susceptibility for contact system-driven BK formation in HAE pa-
tients. The prevalence of HAE type I and II is 1 in 10,000 and 1 in 
50,000 inhabitants, respectively, with no differences in prevalence 
in relation to gender and race, however there are no prevalence 
and incidence studies on HAE type III [pic](56). There are also 
multiple patients with inherited swelling symptoms that closely re-
semble HAE. So far no defined genetic or biochemical defect has 
been identified in these families suggesting that more HAE types 
than the currently known types exist.

Patients who are deficient in C1INH are diagnosed with HAE 
type I. Individuals who have a dysfunctional C1INH protein and 
“normal” C1INH antigen plasma level are classified as HAE type II 
(6, 57). HAE type I and II are transmitted in an autosomal domi-
nate manner, and patients are heterozygous, except in few cases 
having consanguineous parents. The structural abnormalities of 
the SERPING1 gene in HAE patients are heterogeneous, with more 
than 200 mutations registered, http://hae.enzim.hu/. A high preva-
lence of de novo mutations has been described. The mutations are 
different in the two HAE types. In type I, they are randomly dis-
tributed throughout the SERPING1 gene and consist of point mu-
tations, large rearrangements, including partial deletions and du-
plications (58-60). In contrast, most mutations involved in HAE 
type II are clustered in exon 8 of the SERPING1 gene, which en-
codes the active center or hinge region of C1INH protein (61). In 
addition to these two classical types a third variant of HAE was re-
cently described and termed HAE type III (62). HAE type III af-
fects almost exclusively women and was originally epidemiologi-
cally associated with estrogen intake. Meanwhile few male patients 
with HAE type III have been identified questioning elevated es-
trogen levels to be causative for the disease (63). HAE type III pa-
tients have normal C1INH functions and plasma concentration 
(62) but present similar swelling symptoms as other HAE types. 
Using genome wide linkage analysis Cichon and coworkers 
showed that HAE type III is associated with a single point mu-
tation in FXII, (Thr328Lys) which leads to increased FXII activity 
by unknown mechanisms (64). Others have identified another 
SNP affecting the same amino acid (Thr328Arg) that is found in 
some HAE type III families (63). In addition a FXII gene deletion 

Figure 1: Schematic overview on kinin formation, signalling and 
degradation. High-molecular-weight kininogen (HK) and its splice product 
low-molecular-weight kininogen (LK) are substrates for plasma kallikrein 
(PK) and tissue kallikrein (TK) in plasma and tissues or other fluids, respect-
ively. The kininogenases liberate the peptide hormones bradykinin (BK) and 
Lys-bradykinin (kallidin) by limited proteolysis of the precursor molecules. BK 
and kallidin activate kinin B2 receptors (B2R) and induce intracellular signal-
ing cascades. Aminopeptidase activities convert kallidin to BK. Both BK and 
kallidin are further processes by kininase I to desArg9-BK and desArg10-kal-
lidin, respectively, that are agonists for kinin B1 receptors (B1R). Further 
degradation of kinin hormones by kininase II results in inactive peptide frag-
ments.
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of 72 base pairs (starting at Lys324 on the protein level) was ident-
ified in a single HAE type III family. The FXII deletion was found 
in three family members two women and one man; however, it was 
only the women, who developed swellings (65). The mechanisms 
how FXII mutations that are not in the enzymatic domain of the 
protease result in a gain of FXII enzymatic function and edema 
formation warrant further analyses.

Endogenous contact system activators

HAE patients experience recurrent swelling attacks. One compo-
nent of the disease mechanism is either a deficiency in functional 
C1INH (57) or a gain of function mutation in FXII (64). However 
these inherited defects do not fully explain the pathology of the 
disease. HAE patients suffer from swelling episodes indicating that 
under some specific pathological conditions the BK-forming con-
tact system gets activated. Inherited mutations in the BK-forming 
cascades lower the threshold for triggering the protease reactions 
and thus edema. However, to initiate swelling episodes a second 
component is necessary: a triggering agent that starts the more 
susceptible FXII-driven contact system (▶ Figure 2). In contrast to 
C1INH and FXII mutations, the FXIIa-initiating stimuli are 
poorly defined (51, 66). A common feature of all known FXII acti-
vators is that they are negatively charged macromolecules. What is 
the endogenous trigger that initiates contact system-driven BK 
generation in vivo? Recently, several biologic substances have been 
shown to support FXII auto-activation in vivo, these include hepa-
rin released from mast cells (MC), misfolded protein aggregates 
and platelet polyphosphates (51, 66, 67). Extra cellular nucleotides 
activate FXII and drive the intrinsic coagulation pathway (68), 
whether RNA has the capacity for triggering BK formation in vivo 
is awaiting further analyses.

Heparin

Heparin is a linear, unbranched, and highly sulfated polysac-
charide consisting of repeating disaccharide units that is exclus-
ively stored in secretory MC granules. Heparin initiates formation 
of BK in an FXII-dependent manner (51). Minute amounts of he-
parin (<4 μg/ml) are sufficient to trigger FXII activation and to 
protect FXIIa from inhibition by C1INH. Heparin specifically acti-
vates the BK-forming kallikrein kinin-system. In contrast, the 
FXIIa-driven intrinsic pathway of coagulation is not activated by 
the polysaccharide (51). It is well established that MC and their 
mediators contribute to capillary leakage. Edema models in mice 
showed that MC-heparin, initiates BK formation by FXIIa/PK-
mediated cleavage of HK in plasma. Intravital laser scanning 
microscopy and tracer based experiments revealed heparin-driven 
leakage and fluid extravasation in the skin of microvessels of wild-
type mice in response to IgE-mediated MC activation. Deficiency 
in FXII (which blocks FXII-mediated BK formation) (69, 70) and 
B2R (which blocks BK signalling) largely protected mice from he-
parin and allergen-activated MC-induced edema formation. In 
mice lacking C1INH, MC activation or direct heparin application 
generated excessive BK-driven edema (51) suggesting that sub-
clinical allergic relations could initiate swelling attacks in HAE.

Contaminated heparin

Heparin has been widely used as an anticoagulant drug to prevent 
the formation and extension of blood clots in the circulatory sys-
tem via increasing antithrombin activity. During 2007-2008, there 
was a dramatic increase in lethal acute hypersensitivity reactions 
in patients receiving commercial heparin of certain batches from a 
single manufacturer (71). A contaminant was identified in prep-
arations of heparin that was characterised as a non-natural occur-
ring over-sulfated chondroitin sulfate (OSCS) (72). OSCS-con-
taminated heparin has a greatly increased potency for activating 

Figure 2: Control of contact-driven edema in HAE patients. In normal 
healthy individuals C1 esterase-inhibitor (C1INH) controls the trigger-driven 
contact activation cascade. Bradykinin is not generated and no edema is 
formed (1). Excessive trigger-activity such as seen in OSCS (see above), dex-
tran sulfate, MC heparin or polyP may overcome the endogenous inhibitory 

capacity of C1INH and initiates the contact system cascade resulting in 
edema (2). Deficiency in a functional C1INH in hereditary angioedema pa-
tients facilitates edema formation initiated by trigger factors that under “nor-
mal” conditions as in (1) are not sufficient for activating the contact system 
(3).
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FXII and triggering PK-mediated BK formation in human plasma 
and in a swine model of experimental hypotonic shock in vivo 
(73). OSCS BK-forming activity is dependent on negative charge 
density of the polysaccharide rather than on a defined structure. 
Both OSCS and heparin initiate contact system-driven BK 
formation; however, potency for FXII activation decreases from 
OSCS (with an average of four sulfate residues per disaccharide) 
(51), to MC heparin (average of 2.7 sulfate residues per disacchar-
ide) (51). OSCS is an example for contact system mediated BK 
formation in “normal” individuals that do not have a hyper-sus-
ceptible contact system due to C1INH or FXII mutations. To pre-
vent lethal side effects due to pathological contact system acti-
vation elaborated analytical methods including capillary electro-
phoresis and NMR spectrometry, have been established to control 
quality of heparin that is clinically used for anticoagulation (93).

Polyphosphate

MC heparin is not the sole FXII activator. Platelet-derived poly-
phosphate (polyP) initiate the contact system in vivo. PolyP is an 
inorganic, linear polymer of 60-100 orthophosphate units linked 
by phosphoanhydride bonds (74). Platelet polyP can trigger fibrin 
and BK formation via activation of the FXII-driven contact system 
in plasma. PolyP activates contact system-mediated capillary leak-
age in a BK-dependent manner in microvessels of normal mice. In 
contrast B2R- and FXII-deficient mice were protected from polyP-
induced edema. PolyP initiated edema in C1INH deficient mice is 
largely increased and BK formation is excessive (66). PolyP has re-
cently been discovered as a component of MC granules (75) sug-
gesting that polyP could contributes to MC stimulated BK 
formation. The relative importance of heparin versus polyP for 
aberrant MC-mediated leakage remains to be characterised (66, 
75). Infections are a known trigger for swelling attacks in HAE (14, 
76). Bacteria contain huge amounts of polyP and bacterial polyP 
potently trigger contact system-driven BK formation in plasma 
(66) offering a rational for onset of vascular leak being associated 
with infectious states.

Misfolded protein-aggregatres

Misfolded protein-aggregates activate FXII and specifically trigger 
the kallikrein kinin-system without activation of the intrinsic 
pathway of coagulation. BK formation was activated in blood from 
patients with systemic amyloidosis, a disease characterised by the 
accumulation and deposition of misfolded plasma proteins. Mis-
folded protein-aggregates are hallmark of Alzheimer’s disease (67), 
suggesting that the contact system might have implications for 
Alzheimer’s pathology. A rational for selective FXIIa-mediated PK 
activation is still speculative but could be nature of the negatively 
charged surfaces that are exposed by the misfolded proteins. Addi-
tionally, different FXIIa forms that occur in the activation reac-
tions may also contribute for selective BK-formation (77). The ar-
tificial FXII activator high-molecular-weight dextran sulfate also 
specifically triggers BK formation (78).

Therapy of hereditary angioedema

Although substantial progress has been made in understanding 
the molecular mechanisms underlying swelling attacks in HAE, 
treatment options using replacement therapy with intravenous 
C1INH has been limited to a few countries only. Prophylactic ther-
apy had been relied on attenuated androgens or antifibrinolytic 
agents such as danazol and stanazolol or tranexamic acid, respect-
ively, for decades. Although rather effective, these drugs have been 
fraught with side effects. Recently, new rational treatment strat-
egies have emerged from understanding the mechanisms of HAE 
and were approved by the European Commission and Food and 
Drug Administration with proven efficacy for the treatment of 
HAE attacks. The novel drugs are recombinant or plasma derived 
C1INH (79), plasma kallikrein inhibition (Ecallantide) (55) and 
B2R antagonists (Icatibant) (80). A detailed overview of HAE 
treatment is not in the scope of our review, and we would like to 
refer interested readers to another recent review (81). Intravenous 
infusions of C1INH concentrate shortened the length of and fre-
quency of swelling attacks in HAE I and II patients (82). In 
contrast to C1INH infusions , the peptidic drug Icatibant and Ec-
allantide can be injected subcutaneously in an acute attack in HAE 
I and II patients, result in a relief the symptoms (55, 80). In com-
parison to established therapies in HAE I and II types not much is 
know how to treat edema in patients with type III disease.

Future perspective

Currently available drugs for HAE patients do not completely pro-
tective against edema attacks. Nanofiltered C1INH concentrate 
shortens the duration of acute attacks and when used for prophy-
laxis, the drug reduces the frequency of acute attacks (82). The 
swelling attacks in untreated HAE patients typically last 2-5 days 
and there is a delay before symptom relief in HAE patients using 
C1INH, Icatibant or Ecallantide. This suggests that additional 
mechanisms contribute in maintaining swellings in HAE. B1R an-
tagonists reduce vessel leakage in HAE (34), indicating B1R signal-
ling to be involved in longer lasting edema formation. The relative 
contribution of B1R and B2R seems to be tissue dependent (83). 
Combined B1R and B2R inhibition may block edema formation, 
and provide a future therapeutic option. Another option could be 
to combine the currently established drugs and to increase the 
dose, this might be sufficient to block edema during the attacks.
For HAE type III there are no larger clinical studies and rational 
treatments, with the exception to avoid estrogens (84). In some 
small patient cohorts tranexamic acid (85), Icatibant (86) or 
C1INH (87) concentrate have been off-label used for treatment of 
acute swelling attacks. For prophylaxis regiment various drugs 
have been orally applied including tranexamic acid (88) or proges-
terone (89). Novel strategies are required to treat and prevent 
edema in HAE type III. AS FXII deficiency or inhibition is not as-
sociated with any increase in bleeding (90), pharmacological in-
hibition of FXII offers the unique chance to develop drugs for effi-
cient, specific and safely interference with edema. A new and excit-
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ing method to inhibit FXII and PK activity is based on antisense 
technology (91). Another method to block FXII activity is based 
on monoclonal anti-FXIIa antibodies that block activation of the 
contact system (92). Anti-FXIIa antibodies have a long half-life in 
the circulation and an inhibitory function for up to a few weeks 
and thus could be used prophylactic.

In summary, HAE is a rare swelling disorder that is driven by 
excessive BK formation. Understanding the mechanisms of HAE 
offers the rational to treat the disease and potentially other dis-
orders associated with aberrant vascular leak.
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